

Deliverable D2.4

Specifications of Pilot Test 4 / Use Case 4

v1.0

Document Information

Deliverable Title	Specifications of Pilot Test 4 / Use Case 4
Number of the Deliverable	D2.4
WP/Task related	WP2/WP2.4
Distribution/Confidentiality	PU Public
Date of Delivery	30-06-2017
Status and Version	Final Version 1.0
Number of Pages	20 pages
Person Responsible for Document	Stefan Engleder - voestalpine
Author(s)	Stefan Engleder - voestalpine
Reviewers	Karl Zach - VERBUND

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735503. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY.

Revision History

Version	Date	Author / Reviewer	Notes
0.1	19/05/2017	S. Engleder	First draft
0.2	21/4/2017	S. Engleder	Clarification KPI
0.3	22/05/2017	S. Engleder	Detailing /correction of pt 4.1 pt.2: connection SCADA_voestalpine- DCS added, Update diagram of use cases, definition of KPI (THD _I , cosf), new formal structure
0.4	22/05/2017	K. Zach	Revision of points 4 to 6 after correction by Mr Zach
0.5	02/06/2017	S. Engleder	Correction of KPI: removal of : reporting of standard deviation
0.6	20/06/2017	K. Zach	General remarks, update diagram of use cases
1.0	29/06/207	S. Engleder	Final Version

Executive Summary

Work Package 2 (WP2) of the H2FUTURE project has the objective to detail the aims and execution of the individual use cases / pilot tests and the quasi-commercial operation phase, which are performed in WP8 at a later stage of the project.

In this document, deliverable D2.4, the specifications of the use case / pilot test 4 - Integration in future Low Carbon Steel Plant are provided. In this use case the electrolyser is used to reduce the load fluctuations of voestalpine towards the electricity grid caused by two different arc furnaces: an electric arc furnace (EAF – use case 4_1, according to pt. 8) and a ladle arc furnace (LAF – use case 4_2, according to pt. 8). For the non-existing EAF a synthetic active power curve and for the existing LAF the real active power curve is used to calculate the needed set-point of the electrolyser for load smoothing.

In order to facilitate the development of the use case / pilot test specifications a common methodology based on the use case collection method (cf. Smart Grid Coordination Group at EC level) has been used, which is briefly introduced in chapter 2.

The filled-out use case template for use case / pilot test 4, which contains the general narrative description, KPIs, sequence diagram, etc., can be found in chapter 3.

Table of Contents

Do	ocume	ent Information	2
Re	evisior	h History	3
E>	ecutiv	e Summary	4
Ta	able of	Contents	5
1	Intr	oduction	6
	1.1	The H2FUTURE Project	6
	1.2	Scope of the Document	6
	1.3	Notations, Abbreviations and Acronyms	7
2	Use	e Case Methodology	8
	2.1	Introduction to Use Cases	8
	2.2	Use Case Template	8
3	Use	e Case / Pilot Test 2	9
4	Ref	ferences	20
	4.1	Project Documents of H2FUTURE	20
	4.2	External Documents	20

1 Introduction

1.1 The H2FUTURE Project

As part of the H2FUTURE project a 6 MW polymer electrolyte membrane (PEM) electrolysis system will be installed at a steelworks in Linz, Austria. After the pilot plant has been commissioned, the electrolyser is operated for a 26-month demonstration period, which is split into five pilot tests and quasi-commercial operation. The aim of the demonstration is to show that the PEM electrolyser is able to produce green hydrogen from renewable electricity while using timely power price opportunities and to provide grid services (i.e. ancillary services) in order to attract additional revenue.

Subsequently, replicability of the experimental results on a larger scale in EU28 for the steel industry and other hydrogen-intensive industries is studied during the project. Finally, policy and regulatory recommendations are made in order to facilitate deployment in the steel and fertilizer industry, with low CO_2 hydrogen streams also being provided by electrolysing units using renewable electricity.

1.2 Scope of the Document

Work Package 2 (WP2) of the H2FUTURE project has the objective to detail the aims and execution of the individual use cases / pilot tests and the quasi-commercial operation phase, which are performed in WP8 at a later stage of the project. Further on, in order to validate the commercial exploitation of the PEM electrolyser, to analyse the operational impacts and the deployment conditions of the resulting innovations, key performance indicators (KPIs), which are monitored during the demonstration, are also detailed in WP2. For each use case / pilot test specification (D2.1 – D2.5), for the specification of the quasi-commercial operation (D2.6), for the final technical review (D2.7) and for the monitored KPIs separate documents will be created in WP2.

This document, deliverable D2.4, details the specifications for use case / pilot test 4 - Integration in future Low Carbon Steel Plant.

In this use case the electrolyser is used to reduce the load variations of voestalpine towards the electricity grid caused by two different arc furnaces: an electric arc furnace (EAF – use case 4_1, according to pt. 8) and a ladle arc furnace (LAF – use case 4_2, according to pt. 8). For the non-existing EAF a synthetic active power curve and for the existing LAF the real active power curve is used to calculate the needed set-point of the electrolyser for load smoothing.

The aim of this use case is to quantify the trend curve of the active power of the electrolyser to minimise the deviations of the active power curve of an EAF and a LAF and analyse the following key performance indicators (KPIs):

- Load smoothing factor
- Power quality factors

1.3 Notations, Abbreviations and Acronyms

AF	Common title for LAF or EAF (uses in table for KPIs)	
EAF	Electric arc Arc Furnace	
EC	European Commission	
EU	European Union	
IEC	International Electrotechnical Commission	
IED	Intelligent Electronic Device	
KPI	Key Performance Indicator	
LAF	Ladle Arc Furnace	
MV	Medium Voltage	
PEM	Polymer Electrolyte Membrane / Proton Exchange Membrane	
THD	Total Harmonic Distortion	
TSO	Transmission System Operator	
TTT	Tap to Tap Time	
WP	Work Package	

Table 1: Acronyms list

2 Use Case Methodology

2.1 Introduction to Use Cases

In order to facilitate the development of the use case / pilot test specifications a common methodology based on the use case collection method (cf. Smart Grid Coordination Group at EC level) has been used.

Use cases were initially developed and used within the scope of software engineering, and their application has been gradually extended to cover business process modelling. This methodology has extensively been used within the power supply industry for smart grid standardisation purposes by international and European standardisation organisations and projects, such as International Electrotechnical Commission (IEC), M/490 Smart Grid Coordination Group, EPRI Electricity Power Research Institute and National Institute of Standards and Technology (NIST).

In general, use cases describe in textual format how several actors interact within a given system to achieve goals, and the associated requirements. IEC 62559-2 defines a use case as "a specification of a set of actions performed by a system which yields an observable result that is of value for one or more actors or other stakeholders of the system". Use cases must capture all of the functional requirements of a given system (business process or function), and part of its non-functional requirements (performance, security, or interoperability for instance), not based on specific technologies, products or solutions.

The targets of actors can be of different levels, i.e. business or functional, and use cases can be of different levels of detail (very high-level or very specific, related to the task the user of a system may perform) accordingly. Business processes and the related requirements can be described in business use cases, while functions or sub-functions supporting the business processes and their associated requirements can be detailed in system use cases.

2.2 Use Case Template

For the H2FUTURE use cases a template based on the IEC 62559-2 (IEC, 2015) and the DISCERN project (OFFIS, 2013) has been used. This structured format for use case descriptions helps to describe, compare and administer use cases in a consistent way.

The use case template contains the following main information, structured in separate sections and tables:

- Administrative information (version management)
- Description of the use case (general narrative description, KPIs, use case conditions, etc.)
- Diagram(s) of the use case (e.g. sequence diagram)
- Technical details (actor description, references, etc.)
- Step-by-step analysis of the use case
- Information exchanged and requirements

The system use case developed within task WP2.4 of the H2FUTURE project is described in the following section of the document.

3 Use Case / Pilot Test 4- Integration in future Low Carbon Steel Plant

1 Description of the use case

1.1 Name of use case

Use case	Use case identification		
ID	Area / Domain(s)/ Zone(s) Name of use case		
UC4	Customer Premises / Process, Field, Station, Operation	Integration in future Low Carbon Steel Plant	

1.2 Version management

Version ma	Version management			
Version No.	Date	Name of author(s)	Changes Approval status	
0.1	19/05/2017	S. Engleder	First draft	
0.2	21/4/2017	S. Engleder	Clarification KPI	
0.3	22/05/17	S. Engleder	Detailing /correction of pt 4.1 pt.2: connection SCADA_voestalpine- DCS added, Update diagram of use cases, definition of KPI (THD _I , cosf), new formal structure	
0.4	22/05/17	K. Zach	Revision of points 3 to 6 after correction by Mr Zach	
0.5	02/06/2017	S. Engleder	Correction of KPI: removal of : reporting of standard deviation	
0.6	20.6.17	K. Zach	General remarks, update diagram of use cases	

1.3 Scope and objectives of use case

Scope and objectives of use case		
Scope Technical validation of the electrolyser plant to respond to typical hourly demand profiles of electric arc furnaces and ladle arc furnaces		
Objective(s) The highly dynamic operational mode will be tested with a focus on reliability and fast response		
Related business Minimization of deviations in the predicted electric power consumption from the extern		
case(s)	s) grid	

1.4 Narrative of Use Case

Narrative of use case
Short description
This use case describes the trend curve of the active power of the electrolyser to minimize the fluctuations of the
active power curve of an electric arc furnace (EAF – use case 4_1, according to pt. 8) and a ladle arc furnace (LAF
 use case 4_2, according to pt. 8)
Complete description
In this use case the electrolyser is used to reduce the load variation of voestalpine towards the public electricity grid
caused by two different arc furnaces: an electric arc furnace (EAF – sub-use case 4_1) and a ladle arc furnace (LAF

caused by two different arc furnaces: an electric arc furnace (EAF – sub-use case 4_1) and a ladle arc furnace (LAF – sub-use case 4_2). These variations occur because the electricity load curve of an arc furnace (AF) process has times where the active power consumption is approximately zero which are directly followed by times where the full active power is needed (incl. steep ramps). In section 8 load curve examples for both AF are provided.

Use case 4_1 describes the trend curve of the active power of the electrolyser to minimize the deviations of the

active power curve of an electric arc furnace (EAF). The power curve, which is applied in this case, is a synthetic power curve of a 125 MVA electric arc furnace wit tap to tap time (TTT) of 80min.

The EAF mentioned above is not yet in operation, not even planned at the steel plant of voestalpine in Linz. Therefore, it is important to create a database of the theoretical power curve of the EAF, which is directly fed into the SCADA system of the electrolyser.

The nominal power of the installed electrolyser is very much smaller than the power of the EAF, for this reason the EAF power is scaled to the nominal power of the electrolyser (i.e. 6 MW) – see section 8 for more details.

This use case also includes the description of the trend curve of the active power of the electrolyser to minimize the deviations of the active power curve of an existing ladle arc furnace (LAF) at voestalpine in Linz (use case 4_2). The power curve, which is applied in this case, is the measured curve of ladle arc furnace no. 4 with a nominal power of 25 MVA.

The current active power value of the LAF is sent via an analog signal to the SCADA system of the electrolyser. The SCADA of the electrolyser system then calculates the suitable power of the electrolyser. Again, as the nominal power of the installed electrolyser is very much smaller than the power of the LAF, the LAF power is scaled to the nominal power of the electrolyser (i.e. 6 MW) – see section 8 for more details.

1.5 Key performance indicators (KPI)

Key performance indicators

ID	Name	Description	Reference to mentioned use case objectives
1	Load smoothing factor	The quality of the total power (load and electrolyser) in terms of constant power consumption measured in different periods (30sec, 1 min, 5min, 15 min, 1h,) $DEV_{Sum,30s} = \frac{1}{40320} * \sum_{1}^{40320} \left \frac{P_{mittel-electrolyser,30s} - P_{mittel-AF,30s}}{P_{mittel-AF,30s}} \right $ $DEV_{Sum,1min} = \frac{1}{20160} * \sum_{1}^{20160} \left \frac{P_{mittel-electrolyser,30s} - P_{mittel-AF,30s}}{P_{mittel-AF,30n}} \right $ $DEV_{Sum,1min} = \frac{1}{40322} * \sum_{1}^{4032} \left \frac{P_{mittel-electrolyser,30n} - P_{mittel-AF,30n}}{P_{mittel-AF,5min}} \right $ $DEV_{Sum,1smin} = \frac{1}{1344} * \sum_{1}^{344} \left \frac{P_{mittel-electrolyser,30n} - P_{mittel-AF,5min}}{P_{mittel-AF,5min}} \right $ $DEV_{Sum,1smin} = \frac{1}{336} * \sum_{1}^{236} \left \frac{P_{mittel-electrolyser,15min} - P_{mittel-AF,15min}}{P_{mittel-AF,15min}} \right $ $DEV_{Sum,1n} = \frac{1}{336} * \sum_{1}^{236} \left \frac{P_{mittel-electrolyser,30n} - P_{mittel-AF,15min}}{P_{mittel-AF,15min}} \right $ $MAX_DEV_{Sum,30s} = MAX \left(\frac{P_{mittel-electrolyser,30n} - P_{mittel-AF,30s}}{P_{mittel-AF,30s}} \right)$ $95%MAX_{DEV_{Sum,30s}} = 95\% value_MAX \left(\frac{P_{mittel-electrolyser,30n} - P_{mittel-AF,30s}}{P_{mittel-AF,30s}} \right)$ $95%MAX_{DEV_{Sum,1min}} = MAX \left(\frac{P_{mittel-electrolyser,30n} - P_{mittel-AF,30s}}{P_{mittel-AF,30s}} \right)$ $MAX_DEV_{Sum,5min} = MAX \left(\frac{P_{mittel-electrolyser,30n} - P_{mittel-AF,30s}}{P_{mittel-AF,30s}} \right)$	
		$95\% MAX_{DEV_{SumS_{min}}} = 95\% valueMAX \left(\frac{r_{mittel-electrolyser_{Smin}} - r_{mittel-AF_{Smin}}}{P_{mittel-AF_{Smin}}}\right)$	

		$\begin{split} MAX_DEV_{Sum_15min} &= MAX\left(\frac{P_{mittel-electrolyser_15min} - P_{mittel-EF_15min}}{P_{mittel-AF_15min}}\right) \\ 95\%MAX_{DEV_{Sum_15min}} &= 95\% valueMAX\left(\frac{P_{mittel-electrolyser_15min} - P_{mittel-AF_15min}}{P_{mittel-EAF_15min}}\right) \\ MAX_DEV_{Sum_1h} &= MAX\left(\frac{P_{mittel-electrolyser_1h} - P_{mittel-AF_1h}}{P_{mittel-AF_1h}}\right) \\ 95\%MAX_{DEV_{Sum_1h}} &= 95\% valueMAX\left(\frac{P_{mittel-electrolyser_1h} - P_{mittel-AF_1h}}{P_{mittel-AF_1h}}\right) \end{split}$	
2	Power factor	Minimum of observed power factor (cos phi, averaged over a 60s measuring period) at the MV feeder to the transformer-rectifier system when operating the electrolyser system at partial loads between minimum partial load and 100% of nominal production. [KPI unit]: ./.	
3	Harmonic distortions	Maximum of observed harmonic current distortions (THD _I , averaged over a 60s measuring period) at the MV feeder to the transformer-rectifier system when operating the electrolyser system at partial loads between minimum partial load and 100% of nominal production. [KPI unit]: ./.	

1.6 Use case conditions

Use case conditions
Assumptions
The electrolyser system can follow given power gradients of the EAF or the LAF
Prerequisites
Data exchange from the voestalpine process control units to the electrolyser and vice versa operates faultless
High power gradients can be repeated without loss of performance during the concrete use case

1.7 Further information to the use case for classification / mapping

Classification information
Relation to other use cases
Use case of the WP2.4 of H2FUTURE
Level of depth
Individual use case
Prioritisation
Implemented in demo
Generic, regional or national relation
Austria
Nature of the use case
Technical
Further keywords for classification
Power curve compensation, electric arc furnace, EAF, ladle arc furnace, LAF

1.8 General remarks

General remarks

2 Diagrams of use case

3 Technical details

3.1 Actors

Actors				
Grouping		Group description		
Actor name	Actor type	Actor description	Further information specific to this use case	
Intelligent Electronic Device (IED)	Component	Any device incorporating one or more processors with the capability to receive or send data/control from or to an external source (e.g., electronic multifunction meters, digital relays, controllers)	In this Use Case, the IED collects measurements of active power from the voestalpine internal grid	
Electrolyser	Component	An electrolyser is a technology allowing to convert electricity into hydrogen (and oxygen). It consists of electrolyser stacks (several electrolyser cells stacked to a larger unit) and the transformer rectifier system providing the electrical power		
SCADA_voestalpine	Application	Supervisory control and data acquisition – an industrial control system to control and monitor a process and to gather process data. A SCADA consists of programmable	SCADA voestalpine controls and monitors the voestalpine internal distribution net and the connection to the external 110kV grid	
SCADA_ Electrolyser	Application	In the set of the set	In this use case the SCADA controls the electrolyser process and sets the DC power for the electrolyser stack	

Data Collecting System (DCS)	Application	A DCS is a computer application that facilitates the process of data collection, allowing specific, structured information to be gathered in a systematic fashion, subsequently enabling data analysis to be performed on the information	The DCS (level 2 system) collects and stores data of variable processes and process control units in voestalpine

3.2 References

Refe	rences					
No.	References Type	Reference	Status	Impact on use case	Originator / organisation	Link

4 Step by step analysis of use case

4.1 Overview of scenarios

Scer	Scenario conditions						
No.	Scenario name	Scenario description	Primary actor	Triggering event	Pre-condition	Post- condition	
1	Measuring	IED measures the AC power consumption of the electrolyser	IED	periodically			
2	Control	SCADA_Electrolyser sends control commands to the electrolyser in order to change its power consumption	SCADA_ electrolyser	SCADA_Electrolyser gets information of the LAF / EAF power directly via analog signal from the SCADA_voestalpine and calculates the current values of the electrolyser power	Communications from SCADA_Electrolyser to the electrolyser can be established. The electrolyser is up and running.	Electrolyser adopts its power consumptio n according to the control commands	
3	Monitoring	SCADA_voestalpine reports the chosen data to the DCS	SCADA_ voestalpine	SCADA_voestalpine periodically sends the data to the DCS	Communications from SCADA_voestalpine application to DCS must be established.		

4.2 Steps – Scenarios

Scer	Scenario							
Scen	ario name:	No. 1 – Meas	uring					
Step No.	Event	Name of process/ activity	Description of process/ activity	Service	Information producer (actor)	Information receiver (actor)	Information exchanged (IDs)	Require ment, R-IDs
1	Periodically	Get voestalpine- grid measurements	IED performs measurement	INTERNAL OPER- ATION	IED	IED	PC_M	
2	Periodically	Show grid measurements	IED shows grid measurements to SCADA voestalpine	SHOW	IED	SCADA voestalpine	PC_M	
3	Periodically	Get measurement of AC power of the electrolysers	IED performs measurement	INTERNAL OPER- ATION	IED	IED	PC_M	

4	Periodically	Show electrolyser measurements	IED shows electrolyser AC consumption to SCADA electrolyser	SHOW	IED	SCADA Electrolyser	PC_M	
Scen	ario name:	No. 2 – Contr	ol					
Step No.	Event	Name of process/ activity	Description of process/ activity	Service	Information producer (actor)	Information receiver (actor)	Information exchanged (IDs)	Require ment, R-IDs
1	Periodically	Supervise net operation	SCADA voestalpine supervises the grid state and processes grid measurements	INTERNAL OPERATI ON	SCADA voestalpine	SCADA voestalpine	PC_F	Conf_1
2	Periodically	Show EAF/LAF power to SCADA Electrolyser	SCADA voestalpine sends the (synthetic generated respectively measured) power consumption of the EAF / LAF to the SCADA Electrolyser	SHOW	SCADA voestalpine	SCADA Electrolyser	PC_F	Conf_1
3	EAF / LAF power consumption value received	Supervise electrolyser operation	SCADA Electrolyser calculates needed setpoint of the electrolyser to minimise deviations in the power consumption	INTERNAL OPERATI ON	SCADA Electrolyser	SCADA Electrolyser	SP_V	
4	Periodically	Control process	SCADA Electrolyser sends out setpoint value to change the power consumption of the electrolyser	CHANGE	SCADA Electrolyser	Electrolyser	SP_V	
Scen	Scenario name: No. 3 – Monitoring					Demuine		
Step No.	Event	process/ activity	Description of process/ activity	Service	Information producer (actor)	receiver (actor)	exchanged (IDs)	Require ment, R-IDs
1	Periodically	Show electrolyser measurement	Electrolyser sends its current power consumption to the SCADA Electrolyser	SHOW	Electrolyser	SCADA Electrolyser	PC_M	
2	Periodically	Show the power consumption of the electrolyser to DCS	SCADA Electrolyser sends the information of the power consumption to the DCS	SHOW	SCADA Electrolyser	DCS	PC_M	
3	Periodically	Show net measurement	IED sends current power consumption values to the SCADA voestalpine	SHOW	IED	SCADA Electrolyser	PC_M	
4	Periodically	Show the power consumption of the AC power of the electrolyser to DCS	SCADA_voestalpine sends the information of the power consumption to the DCS	SHOW	SCADA voestalpine	DCS	PC_M	

5 Information exchanged

Information exchanged						
Information	Name of	Description of information	Boquiromont B IDo			
exchanged, ID	information	exchanged	Requirement, R-IDS			
PC_F	Power Consumption of Furnace	Measurement indicating the (synthetic generated respectively measured) power consumption of the EAF / LAF of voestalpine	Conf_1			
PC_M	Power	Measurement indicating the AC power				

	Consumption consumption of the electrolyser and		
	Measurement	voestalpine grid	
SP_V	Set Point Value	Set-point for controlling of the	
	Set-Follit value	electrolyser	

6 Requirements (optional)

Requirements (option	Requirements (optional)			
Categories ID	Category name for requirements	Category description		
Conf	Configuration Issues	Requirements regarding communication configurations		
Requirement R-ID	Requirement name	Requirement description		
Conf_1	Communication signal SCADA voestalpine – SCADA electrolyser	For communicating the power consumption of the EAF / LAF an analog 4 – 20 mA signal is used		

7 Common terms and definitions

Common terms and definitions				
Term	Definition			

8 Custom information (optional)

Due to the fact that the calculation of the electrolyser power can only be carried out after the transfer of the measured value of the ladle furnace and the required power gradients cannot be achieved (see Figure 5) the trend power curve of the furnace cannot be compensated exactly by the electrolyser

Figure 5 presupposes that the nominal power of the electrolyser is about 26 MW and the maximum achieved power factor is 26 MW / 30sec. In the concrete use case with nominal power of 6 MW and max. gradient of 6MW / 30sec the expected power trend is scaled and shown in Figure 6

Figure 6: Calculated power consumption of the electrolyser shown as 6 sec average values (nominal power of electrolyser= 6MW; power gradient max= 6MW//30 sec)

The UC4_2 will run for 2 weeks, the following diagram shows the expected power consumption as 15min average values and the average power (approx. 5 MW)

4 References

4.1 **Project Documents of H2FUTURE**

- D2.1 Specifications of Pilot Test 1 / Use Case 1
- D2.2 Specifications of Pilot Test 2 / Use Case 2
- D2.3 Specifications of Pilot Test 3 / Use Case 3
- D2.4 Specifications of Pilot Test 4 / Use Case 4
- D2.5 Specifications of Pilot Test 5 / Use Case 5
- D2.6 Specifications of quasi-commercial Operation
- D2.7 Specifications of Final Tests
- D2.8 KPIs to monitor the Demonstrations and perform the Exploitation Tasks

4.2 External Documents

International Electrotechnical Commission (IEC) (2015): IEC 62559-2 "Use case methodology – Part 2: Definition of the templates for use cases, actor list and requirements list", 2015

OFFIS (2013): "Architecture templates and guidelines", deliverable D1.3 of the DISCERN project, available at <u>https://www.discern.eu/project_output/deliverables.html</u>, 2013